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Q Lie group.
@ Differential equations on Lie group.

© Guaranteed exponential operator.

Q@ Examples.
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Lie groups

A Lie group is a smooth manifold with a group structure. J

A Lie groups can represent simultaneously the state of a system (as an
element of the manifold) and the transformation from one state to another
(with the group operation).

E.g., SO(2) (2D rotations). An element can represent the heading of a car,
or the rotation from a heading to another one.

Matrix representation:

0 — R@Z(

01 +6> — R91 . R92

cosf® —sin6 )

sinf cosf

SO2(R)
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Example: SE(2)

SE(2)(R) combines rotations and tranlations on a plane.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ‘yﬁ,,,,,, LN l_______
X1 Xz‘ X1 @ X2
Matrix representation:

cosf —sinf x
X = M= sinf  cosf vy
0 0 1

COS(91 + 92) — sin(01 + 092) X1 + X2 cos 1 — yo sin 0y

X1 Xo — M- -M= sin(91 -+ 92) COS(91 —+ 92) y1 + x2 sinf1 + y2 cos 61

0 0 1

As a transformation, x and y represents the translation w.r.t. the current heading (x = forward,

y = on the side). Note that My My # My My, thus X1 @ Xa # Xa b Xi.
Réunion AID 4 /26
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Example: SO(3)

The group of 3D rotations (or the 3D orientation of a solid) can also be
represented as a 3x3 matrix.
Matrix representation:

R —> M:(Vx Vy VZ)

M is a rotation matrix: MMT = Id (and
det(M) = 1). This constraint translates
into 6 independant equalities on the com-
ponents of V, V, and V,. Hence SO(3)
is a manifold of dimension 3.
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Graphical representation of SO(3)

We can also represent an element of SO3 as the position and the heading
of a car on a sphere: V, is orthogonal to the surface of the sphere and V,
points forward.

For a sphere of radius r, the position of the car is rV,.
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Lie algebra

As a group, a Lie group always as neutral element Id.

The Lie algebra g associated to a Lie group G is the space tangent to G at the
point Id. Its has the same dimension as G.

Example: for SO(2), with R = ( cosf —sinf )

sinf  cosf
time differentiation of R gives:

p_ _—ésine —(9:C059
~ \ Hcosf —Bsinb

SO(2) 50(2)

which, near Id (6§ = 0):

R=(50")=i(%o")

The Lie algebra is 50(2) = R, and R represents the ma-

trix representation of 6. We denote this representation
o,
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Lie algebra for SE(2)

By extension, the Lie algebra describes the space tangent to G at any point
of the manifold: let A€ G and 7 € g, then A7" is tangent to G at A.

Example for SE(2)

An element of se(2) is a vector (x y 0) :

[0 bk .
R=16 0 y |=xy0"
0O 0 O
Let Ry = R(tp). Then R(ty) = Ry7”" with 7/ the |
differentiation of t — Ry 'R(t) at to. Then: (%:9)

@ x is the speed component relative to the current /f@

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

heading;

@ y the speed component orthogonal to the
current heading;

@ 0 the angular speed.
D. Massé (LabSTICC-UBO) Integration on Lie groups Réunion AID 8/26




Lie algebra for SO(3)
Let M € SO(3). From MMT =1d, we get MMT + MMT = 0. Thus MMT is
skew-symmetric, and when M = Id:

50(3)

The Lie algebra so03 is the space of 3x3 skew-symmetric matrices.

M — wz O _wx

w = (wx,wy,w;) is the vector of angular velocity in
local coordinates.
On the sphere:

® w, > 0 represents the car moving forward;

@ w;, > 0 represents the car turning left;

@ w, > 0 represents the car “sliding” to the right.

Réunion AID 9/26
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Differential equation

Differential equation

A differential equation on a Lie group G (with the Lie algebra g) is of the
form:

R(t) = f(R,t) R(to) = Ro
with f : G xR — g.
Hence, at each instant t:
R(t+dt) = R(t)+ R(t) f(R(t),t)" dt
= R(t)(Id + f(R(t), t)"dt)
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g s
Constant case: R(t) = v

When f(R, t) = v is constant, we have:
1/dt
R(1) = R(0) lim [](Id+ v"dt)
1

dt—0

Then:

R(1)=R(0)Y" 00)" _ Rio)er”

n!
n>0

and more generally,

R(t) = R(ty)elt—fo)v
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Differential equation Exponential map

Case R(t) = f(t)

Two equivalent “product integral” equations:

R(t) = R(t) (Id+ f(to + d7)d7)(Id + f(to + 2d7)dT7)...

t

= R(to) (1+f(r)d7) ] ]
0

or R(t) = R(to) "M ]
0

o these are “right-product integrals” (symbol ] at the right of the
expression);
@ the second expression is uncommon, but its discrete approximation
converges faster than the first one.
A classical (not guaranteed) approximation of R(t) with N steps is
therefore (with 6t = (t — tp)/N):

f(tg) f(tg+ot) f(t)

R(t) = R(tp)e ™~ e~ N ...e N
Réunion AID  12/26




Differential equation Exponential map

Example Y
In SE,, let's consider, with t € [0, 1]: L 9
0 —7m =t Lo 3 s 9
fy=| = 0 0O 0s- R A
0O 0 O 06 - Ny
oo
and R(0) = Id. 2
0.2 j
! 1 0 -—2/x o
R(1) = ef (1)t H = 0 -1 1 210 08 06 04 02 00 02 o4
0 0 0 0

1.10 o

1.05 4

Red: “basic” Euler (Id + f(t)dt) ; blue : “expo- @

nential” Euler (ef(*)%t) : green : with midpoint |
(ef(t+9t/2)0t) " Black : exact final position.
Despite f being affine, using the midpoint does °~]
not give an exact result. oes |

0.80 -

T T T T T
-0.70 -0.65 -0.60 -0.55 -0.50
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Differential equation Mean exponentiation

Issue with product of exponential
Classical result

Let  : [0,1] — R" continuous, such that ([0, 1]) C [B]. Then:

/1 f(t)dt € [B]
0

This result enables to replace f by a (convex) over-approximation of its
Image to get a guaranteed integration.
However, in the general case:

t1
ef(t)dtl_[ ”; oJo f(t)dt
to

and

O TT ¢ (e | v e [B])
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Differential equation Mean exponentiation

Example
Still in SE»:
0 —7m mt
f(t)y= = 0 O
0 O 0
We recall:
; 1 0 —2/n | 5
f(t)dt H _ 0 -1 1 107 S &N
e
0 0 0 0 v\
0.6 v
An example of v such that eV = ef(t)dt H(l, |
can be (light blue): ] T
0 —7m w/2 - ’:L
— T 0 1 0.0 A ﬁ
0 0 O -0.2

-1.0 -08 -0.6 -04 -0.2 0.0 0.2 0.4

But v is not in [f(t)].
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Guaranteed exponential operator

Guaranteed exponential operator

The issue stems from the fact that in general, e?ef # eA*+8 (thus from
AB # BA).

Exponential operator for integration

Let [B] a box. We define exp([B]) (not equal to elBl) as:

1
exp([B]) = {e* ] | f:[0,1] — [B]}
0

Note: in this definition, the side of the product does not matter:

1
exp([B]) = {] [ "% | ...}
0
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Guaranteed exponential operator

Example
With
0 = [0,7] 2'0_
[B]=| —= 0 O -
0 O 0
elBl is in red, exp([B]) in blue.
1 0 0
e[B] - O _1 [O, 2] | -1.0 -0.5 0‘0 0.5 1.0
0 O 1 |
1 0 x _
exp([B])=| 0 1 y |
0 0 1 10
s.t. .
XX+ (y—-12<1 |
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Guaranteed exponential operator

Guaranteed exponential operator

Main result:

exp([B]) C Id + [B] +

Bl|[B B||B||B
2le] , 1BIBIE) |

Let's precise that:
o [B][B]={BiB> | B1€[B],B:€[B]} # [BJ?
@ we must use the convex hull (box) after the computation of products;

o factorisations (Horner's scheme) are not possible.
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Guaranteed exponential operator

Justification, error term
Justification: let’s consider eV/2eY/2 with U,V € [B].

u Vv 1 /U> Uv V2
U/2V/2:I ~ v -
e’’“e d+<2—|—2)—|—2(4—|—2—i—4)—|—

Second-order term (UTZ - % + VTZ) is in the convex hull of U?, UV and

V2, thus in the convex hull of [B][B]. Similar result can be shown on
higher-order terms.

The error term is similar to the error term for elB!:

N
exp([B) € ) ... +En
k=0

with N+1|N+1
P 13

matp »([—1,1])

(N4 1)1 - DBl
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Guaranteed exponential operator

Scaling and squaring

Quite easily: X ,
exp([B])  exp(5[B]) - exp(3[B])

This equation can be used when ||B|| is too large.

6 -

Light purple: 30 iterations, without scal- ] .
ing and squaring. o-

Dark purple: using scaling and squaring.
Since the matrix is quite large, the preci-
sion is limited. ]

-6 -4 -2 0 2 4 6
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ETETET LG RV EIRC I E1 I8 Several-steps integration

State representation and contraction

Note: from now on, we consider [B] to have a small radius.
Given [B] = C + [R] (with [R] centered around 0), we express exp([B]) as:

exp([B]) € [M][e“]

where [e¢] is quasi-punctual. Then [M] is a small box around Id.

o this can be done by computing [M] = [e¢]texp([B]) (other
approaches did not give any improvement), and [e“]™! = [e¢]" in

SO(3);

@ since [M] represents a set of Lie group elements, we can contract it
accordingly (contraction around Id works fairly well).
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ETETET LG RV EIRC I E1 I8 Several-steps integration

Several-steps guaranteed integration

We keep this representation [M][e€] with [e¢] punctual, and [M] “small” around
Id during the whole integration:
At each step, we approximate exp([B]) as [M,][e“2]. Then we use:

[M][e€][M][e™] C ([M][e“][Ma][e“]~*)[e“][e]
Thus [M'] = [[M]([e€][M>][e€]~1)] (contracted) and [e€'] = [e€][e%].
@ avoid the cumulated uncertainties ([M]) to “explode” by rotation;

@ works better with [M] — Id (similarly, [e“][M.][e¢]~! is computed as
10+ [eC]([Ms] — 1d)[eC] ).

[(M][eC[Ma][e€]1 2]

(contracted)
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Sy B
Application

“Guaranteed” integration of gyro data: for each temporal step [tg, t1], we
consider f varying inside a box.

*000,5

''''''''
k7

b F
Taapp
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Discussion

We can also describe the problem as a 9-dimensional differential
equation /inclusion (X € R®):

X =A(t)- X

Then A is a 9x9 matrix. A common approach would be to approximate
A(t) - X (on a small step) by A, - X + [B] and safely approximate the
evolution of X using e (here, A, is punctual):

ot
X(t +0t) — X € e"An(X () — X,) + / (Ot An[ B g7
0

The representation of the reachable states requires to use abstract domains,
at least some kind of parallelotops ([X]| = {@x | x € [v]}. Compared with
the previous representation [X] = [M][e¢], we can associate the
quasi-punctual @ (81 elements) with [e¢] (9 elements), and [M] with [v].
The approach is slower (more dimensions) and lacks the specific
contractors used for SO(3).
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Discussion (2)

D. Massé (LabSTICC-UBO) Integration on Lie groups Réunion AID 25 /26




ETETET LG RV EIRC I E1 I8 Several-steps integration

Conclusion

©Q “Simple” guaranteed integration over Lie Group.
@ Enable to use the specific properties on the Group (contractor).

© Extension to different groups.

@ How to handle more complex equations?
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