Guaranteed integration on Lie groups

Damien Massé

LabSTICC - Robex Université de Bretagne Occidentale Brest, France

AID/FARO, nov. 2023

Outline

- Lie group.
- ② Differential equations on Lie group.
- Guaranteed exponential operator.
- 4 Examples.

Lie groups

A Lie group is a smooth manifold with a group structure.

A Lie groups can represent simultaneously the state of a system (as an element of the manifold) and the transformation from one state to another (with the group operation).

E.g., SO(2) (2D rotations). An element can represent the heading of a car, or the rotation from a heading to another one.

Matrix representation:

$$\begin{array}{cccc} \theta & \hookrightarrow & R_{\theta} = \left(\begin{array}{ccc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array} \right) \\ \theta_{1} + \theta_{2} & \hookrightarrow & R_{\theta_{1}} \cdot R_{\theta_{2}} \end{array}$$

Example: SE(2)

 $SE(2)(\mathbb{R})$ combines rotations and transactions on a plane.

Matrix representation:

$$X \hookrightarrow M = \begin{pmatrix} \cos \theta & -\sin \theta & x \\ \sin \theta & \cos \theta & y \\ 0 & 0 & 1 \end{pmatrix}$$

$$X_{1} \oplus X_{2} \hookrightarrow M_{1} \cdot M_{2} = \begin{pmatrix} \cos(\theta_{1} + \theta_{2}) & -\sin(\theta_{1} + \theta_{2}) & x_{1} + x_{2}\cos\theta_{1} - y_{2}\sin\theta_{1} \\ \sin(\theta_{1} + \theta_{2}) & \cos(\theta_{1} + \theta_{2}) & y_{1} + x_{2}\sin\theta_{1} + y_{2}\cos\theta_{1} \\ 0 & 0 & 1 \end{pmatrix}$$

As a transformation, x and y represents the translation w.r.t. the current heading (x = forward, y = on the side). Note that $M_1M_2 \neq M_2M_1$, thus $X_1 \oplus X_2 \neq X_2 \oplus X_1$.

Example: SO(3)

The group of 3D rotations (or the 3D orientation of a solid) can also be represented as a 3x3 matrix.

Matrix representation:

$$R \hookrightarrow M = (V_x \ V_y \ V_z)$$

M is a rotation matrix: $MM^T = Id$ (and det(M) = 1). This constraint translates into 6 independant equalities on the components of V_x , V_y and V_z . Hence SO(3) is a manifold of dimension 3.

Graphical representation of SO(3)

We can also represent an element of SO_3 as the position and the heading of a car on a sphere: V_z is orthogonal to the surface of the sphere and V_x points forward.

For a sphere of radius r, the position of the car is rV_z .

Lie algebra

As a group, a Lie group always as neutral element Id.

The Lie algebra \mathfrak{g} associated to a Lie group G is the space tangent to G at the point Id. Its has the same dimension as G.

Example: for SO(2), with $R = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$, time differentiation of R gives:

$$\dot{R} = \begin{pmatrix} -\dot{\theta}\sin\theta & -\dot{\theta}\cos\theta \\ \dot{\theta}\cos\theta & -\dot{\theta}\sin\theta \end{pmatrix}$$

which, near Id ($\theta = 0$):

$$\dot{R}=\left(egin{array}{cc} 0 & -\dot{ heta} \ \dot{ heta} & 0 \end{array}
ight)=\dot{ heta}\left(egin{array}{cc} 0 & -1 \ 1 & 0 \end{array}
ight)$$

The Lie algebra is $\mathfrak{so}(2) = \mathbb{R}$, and R represents the matrix representation of $\dot{\theta}$. We denote this representation $\dot{ heta}^{\wedge}$.

s o (2)

SO(2)

Lie algebra for SE(2)

By extension, the Lie algebra describes the space tangent to G at any point of the manifold: let $A \in G$ and $\tau \in \mathfrak{g}$, then $A \tau^{\wedge}$ is tangent to G at A.

Example for SE(2)

An element of $\mathfrak{se}(2)$ is a vector $(\dot{x}\ \dot{y}\ \dot{\theta})$:

$$\dot{R}=\left(egin{array}{ccc} 0 & -\dot{ heta} & \dot{x} \ \dot{ heta} & 0 & \dot{y} \ 0 & 0 & 0 \end{array}
ight)=(\dot{x}\ \dot{y}\ \dot{ heta})^{\wedge}$$

Let $R_0 = R(t_0)$. Then $\dot{R}(t_0) = R_0 \tau^{\wedge}$ with τ^{\wedge} the differentiation of $t \mapsto R_0^{-1}R(t)$ at t_0 . Then:

- \bullet \dot{x} is the speed component relative to the current heading;
- \dot{y} the speed component orthogonal to the current heading;
- \bullet $\dot{\theta}$ the angular speed.

Lie algebra for SO(3)

Let $M \in SO(3)$. From $MM^T = Id$, we get $\dot{M}M^T + M\dot{M}^T = 0$. Thus $\dot{M}M^T$ is skew-symmetric, and when M = Id:

so(3)

The Lie algebra \$03 is the space of 3x3 skew-symmetric matrices.

$$\dot{M} = \left(egin{array}{ccc} 0 & -\omega_z & \omega_y \ \omega_z & 0 & -\omega_x \ -\omega_y & \omega_x & 0 \end{array}
ight)$$

 $\omega = (\omega_x, \omega_y, \omega_z)$ is the vector of angular velocity in local coordinates.

On the sphere:

- $\omega_y > 0$ represents the car moving forward;
- $\omega_z > 0$ represents the car turning left;
- $\omega_x > 0$ represents the car "sliding" to the right.

Differential equation

A differential equation on a Lie group G (with the Lie algebra \mathfrak{g}) is of the form:

$$\dot{R}(t) = f(R, t)$$
 $R(t_0) = R_0$

with $f: G \times \mathbb{R} \to \mathfrak{g}$.

Hence, at each instant t:

$$R(t+dt) = R(t) + R(t) f(R(t),t)^{\wedge} dt$$

= $R(t) (\operatorname{Id} + f(R(t),t)^{\wedge} dt)$

Constant case: $\dot{R}(t) = \mathbf{v}$

When $f(R, t) = \mathbf{v}$ is constant, we have:

$$R(1) = R(0) \lim_{dt o 0} \prod_{1}^{1/dt} (\operatorname{Id} + \mathbf{v}^{\wedge} dt)$$

Then:

$$R(1) = R(0) \sum_{n \geq 0} \frac{(\mathbf{v}^{\wedge})^n}{n!} = R(0)e^{\mathbf{v}^{\wedge}}$$

and more generally,

$$R(t) = R(t_0)e^{(t-t_0)\boldsymbol{v}^{\wedge}}$$

Case $\dot{R}(t) = f(t)$

Two equivalent "product integral" equations:

$$R(t) = R(t_0) \left(\operatorname{Id} + f(t_0 + d\tau) d\tau \right) \left(\operatorname{Id} + f(t_0 + 2d\tau) d\tau \right) \dots$$

$$= R(t_0) \left(1 + f(\tau) d\tau \right) \prod_{t=0}^{t}$$

$$R(t) = R(t_0) e^{f(\tau) d\tau} \prod_{t=0}^{t}$$

or
$$R(t) = R(t_0) e^{f(\tau)d\tau} \prod_{0}^{t}$$

- these are "right-product integrals" (symbol \prod_{0}^{t} at the *right* of the expression);
- the second expression is uncommon, but its discrete approximation converges faster than the first one.

A classical (not guaranteed) approximation of R(t) with N steps is therefore (with $\delta t = (t - t_0)/N$):

$$R(t) = R(t_0)e^{\frac{f(t_0)}{N}}e^{\frac{f(t_0+\delta t)}{N}}\dots e^{\frac{f(t)}{N}}$$

Example

In SE₂, let's consider, with $t \in [0, 1]$:

$$f(t) = \left(egin{array}{ccc} 0 & -\pi & \pi t \ \pi & 0 & 0 \ 0 & 0 & 0 \end{array}
ight)$$

and R(0) = Id.

$$R(1) = e^{f(t)dt} \prod_{0}^{1} = \left(egin{array}{ccc} -1 & 0 & -2/\pi \ 0 & -1 & 1 \ 0 & 0 & 0 \end{array}
ight)$$

Red: "basic" Euler $(\mathrm{Id} + f(t)\delta t)$; blue: "exponential" Euler $(e^{f(t)\delta t})$; green: with midpoint $(e^{f(t+\delta t/2)\delta t})$. Black: exact final position. Despite f being affine, using the midpoint does not give an exact result.

Issue with product of exponential

Classical result

Let $f:[0,1]\to\mathbb{R}^n$ continuous, such that $f([0,1])\subseteq [B]$. Then:

$$\int_0^1 f(t)dt \in [B]$$

This result enables to replace f by a (convex) over-approximation of its image to get a guaranteed integration.

However, in the general case:

$$e^{f(t)dt}\prod_{t_0}^{t_1}\neq e^{\int_0^1f(t)dt}$$

and

$$e^{f(t)dt}\prod_{t_0}^{t_1} \not\in \{e^v \mid v \in [B]\}$$

Example

Still in SE₂:

$$f(t) = \left(egin{array}{ccc} 0 & -\pi & \pi t \\ \pi & 0 & 0 \\ 0 & 0 & 0 \end{array}
ight)$$

We recall:

$$e^{f(t)dt}\prod_0^1=\left(egin{array}{ccc} -1 & 0 & -2/\pi \ 0 & -1 & 1 \ 0 & 0 & 0 \end{array}
ight)$$

An example of v such that $e^v = e^{f(t)dt} \prod_{0}^{1}$ can be (light blue):

$$u = \left(\begin{array}{ccc} 0 & -\pi & \pi/2 \\ \pi & 0 & \mathbf{1} \\ 0 & 0 & 0 \end{array} \right)$$

But v is not in [f(t)].

Guaranteed exponential operator

Guaranteed exponential operator

The issue stems from the fact that in general, $e^A e^B \neq e^{A+B}$ (thus from $AB \neq BA$).

Exponential operator for integration

Let [B] a box. We define $\exp([B])$ (not equal to $e^{[B]}$) as:

$$\exp([B]) = \{e^{f(t)dt} \prod_{0}^{1} \mid f: [0,1] \rightarrow [B]\}$$

Note: in this definition, the side of the product does not matter:

$$\exp([B]) = \{ \prod_{0}^{1} e^{f(t)dt} \mid \ldots \}$$

Example

With

$$[B] = \left(egin{array}{ccc} 0 & \pi & [0,\pi] \ -\pi & 0 & 0 \ 0 & 0 & 0 \end{array}
ight)$$

 $e^{[B]}$ is in red, $\exp([B])$ in blue.

$$\mathrm{e}^{[B]} = \left(egin{array}{ccc} -1 & 0 & 0 \ 0 & -1 & [0,2] \ 0 & 0 & 1 \end{array}
ight)$$

$$\exp([B]) = \left(egin{array}{ccc} 1 & 0 & x \\ 0 & 1 & y \\ 0 & 0 & 1 \end{array} \right)$$

s.t.

$$x^2 + (y - 1)^2 \le 1$$

Guaranteed exponential operator

Guaranteed exponential operator

Main result:

$$\exp([B]) \subseteq Id + [B] + \frac{[[B][B]]}{2!} + \frac{[[B][B][B]]}{6!} + \dots$$

Let's precise that:

- $[B][B] = \{B_1B_2 \mid B_1 \in [B], B_2 \in [B]\} \neq [B]^2$
- we must use the convex hull (box) after the computation of products;
- factorisations (Horner's scheme) are not possible.

Justification, error term

Justification: let's consider $e^{U/2}e^{V/2}$ with $U, V \in [B]$.

$$e^{U/2}e^{V/2} = Id + \left(\frac{U}{2} + \frac{V}{2}\right) + \frac{1}{2}\left(\frac{U^2}{4} + \frac{UV}{2} + \frac{V^2}{4}\right) + \dots$$

Second-order term $(\frac{U^2}{4} + \frac{UV}{2} + \frac{V^2}{4})$ is in the convex hull of U^2 , UV and V^2 , thus in the convex hull of [B][B]. Similar result can be shown on higher-order terms.

The error term is similar to the error term for $e^{[B]}$:

$$\exp([B]) \subseteq \sum_{k=0}^{N} \dots + E_N$$

with

$$E_N = rac{||[B]^{N+1}||_{\infty}^{N+1}}{(N+1)!(1-rac{||B||_{\infty}}{N+2})} \mathrm{mat}_{n,n}([-1,1])$$

Scaling and squaring

Quite easily:

$$\exp([B]) \subseteq \exp(\frac{1}{2}[B]) \cdot \exp(\frac{1}{2}[B])$$

This equation can be used when $||B||_{\infty}$ is too large.

Light purple: 30 iterations, without scaling and squaring.

Dark purple: using scaling and squaring. Since the matrix is quite large, the precision is limited.

State representation and contraction

Note: from now on, we consider [B] to have a small radius. Given [B] = C + [R] (with [R] centered around 0), we express $\exp([B])$ as:

$$\exp([B]) \subseteq [M][e^C]$$

where $[e^C]$ is quasi-punctual. Then [M] is a small box around Id .

- this can be done by computing $[M] = [e^C]^{-1} \exp([B])$ (other approaches did not give any improvement), and $[e^C]^{-1} = [e^C]^T$ in SO(3);
- since [M] represents a set of Lie group elements, we can contract it accordingly (contraction around Id works fairly well).

Several-steps guaranteed integration

We keep this representation $[M][e^C]$ with $[e^C]$ punctual, and [M] "small" around Id during the whole integration:

At each step, we approximate $\exp([B])$ as $[M_2][e^{C_2}]$. Then we use:

$$[M][e^C][M_2][e^{C_2}] \subseteq ([M][e^C][M_2][e^C]^{-1})[e^C][e^{C_2}]$$

Thus $[M'] = [[M]([e^C][M_2][e^C]^{-1})]$ (contracted) and $[e^{C'}] = [e^C][e^{C_2}]$.

- avoid the cumulated uncertainties ([M]) to "explode" by rotation;
- works better with $[M] \operatorname{Id}$ (similarly, $[e^C][M_2][e^C]^{-1}$ is computed as $\operatorname{Id} + [e^C]([M_2] \operatorname{Id})[e^C]^{-1}$).

Application

"Guaranteed" integration of gyro data: for each temporal step $[t_0, t_1]$, we consider f varying inside a box.

D. Massé (LabSTICC-UBO)

Integration on Lie groups

Réunion AID

23 / 26

Discussion

We can also describe the problem as a 9-dimensional differential equation/inclusion ($X \in \mathbb{R}^9$):

$$\dot{X} = A(t) \cdot X$$

Then A is a 9x9 matrix. A common approach would be to approximate $A(t) \cdot X$ (on a small step) by $A_m \cdot X + [B]$ and safely approximate the evolution of X using e^{A_m} (here, A_m is punctual):

$$X(t+\delta t)-X_m\in e^{\delta tA_m}(X(t)-X_m)+\int_0^{\delta t}e^{(\delta t- au)A_m}[B]d au$$

The representation of the reachable states requires to use abstract domains, at least some kind of parallelotops ($[X] = \{Qx \mid x \in [v]\}$). Compared with the previous representation $[X] = [M][e^C]$, we can associate the quasi-punctual Q (81 elements) with $[e^C]$ (9 elements), and [M] with [v]. The approach is slower (more dimensions) and lacks the specific contractors used for SO(3).

Guaranteed exponential operator

Several-steps integration

Discussion (2)

Guaranteed exponential operator

Several-steps integration

Conclusion

- "Simple" guaranteed integration over Lie Group.
- 2 Enable to use the specific properties on the Group (contractor).
- Extension to different groups.
- 4 How to handle more complex equations?